Лекция 4. Приём телеметрии: шлюзы, буферизация, нормализация, правила маршрутизации
Цель лекции: разобрать инженерный путь телеметрии от датчика/PLC до брокера и хранилища: роль шлюзов (gateway/edge), механизмы буферизации и надёжной доставки (store‑and‑forward), нормализацию/валидацию данных, а также правила маршрутизации (routing) и обогащения сообщений.
1. Что такое “приём телеметрии” (ingestion)
Приём телеметрии (data ingestion) — это набор компонентов и процедур, которые обеспечивают:
• подключение устройств и сбор данных из разных протоколов;
• первичную обработку (фильтрация, преобразование, дедупликация);
• надёжную доставку в систему обмена сообщениями/стриминг;
• маршрутизацию в разные потребители (хранилище, аналитика, алармы);
• контроль качества данных (валидация схемы, единицы измерения, временные метки);
• безопасность и аудит.
2. Источники телеметрии и особенности
В промышленном IoT источники данных разнообразны:
• PLC/SCADA (OPC UA, Modbus, Profinet);
• датчики по RS‑485, CAN, 4–20 мА (через модули ввода);
• беспроводные сети (LoRaWAN, ZigBee, Wi‑Fi, NB‑IoT/4G/5G);
• устройства с собственными SDK/API.
Проблемы: разная частота, разные форматы, пропуски/дубликаты, различия единиц, “кривое” время и разная надёжность каналов.
3. Шлюзы (Gateway/Edge) — зачем они нужны
Шлюз — это “переходник” и точка контроля между полевым миром (OT) и IP‑миром (IT). Он может быть отдельным устройством (industrial gateway/IPC) или функцией на промышленном ПК.
3.1 Функции шлюза
• Конвертация протоколов: fieldbus → MQTT/HTTP/OPC UA client → cloud/on‑prem.
• Сбор данных с нескольких устройств и агрегирование (например, по 1 сек → по 1 мин).
• Локальная фильтрация шумов, сглаживание, вычисление признаков.
• Буферизация при потере связи (store‑and‑forward).
• Безопасность: TLS/mTLS, сегментация, firewall‑правила, allowlist.
• Управление устройствами: регистрация, конфигурации, OTA (в идеале).
3.2 Где ставить шлюз
Типовой вариант для производства: шлюз стоит на границе OT‑сети и DMZ/IT‑сети, чтобы минимизировать прямые соединения PLC ↔ интернет/облако. Шлюз — единственная точка выхода наружу и точка применения политики доступа.
4. Буферизация и надёжная доставка
Поскольку связь может пропадать, ingestion должен уметь “не терять” данные. Основные подходы:
4.1 Store‑and‑Forward (буфер на диске)
Шлюз пишет сообщения в локальную очередь (файл/встроенная БД) и отправляет дальше при наличии связи. После подтверждения доставки сообщение удаляется.
Ключевые параметры:
• размер буфера (сколько часов/дней хранения);
• политика переполнения (drop oldest / drop newest / агрегация);
• стратегия повторной отправки (exponential backoff);
• подтверждения (ack) от брокера/сервиса.
4.2 QoS/ack на уровне протокола
MQTT QoS 1 обеспечивает “at least once” и подтверждения. Это снижает потери, но возможны дубликаты → нужна дедупликация. QoS 2 дороже и используется редко.
4.3 Идемпотентность и дедупликация
При повторной доставке могут появиться дубликаты. Поэтому важны:
• уникальный идентификатор сообщения (message_id) или комбинация (device_id, timestamp, seq);
• дедупликация на шлюзе/ингест‑сервисе;
• идемпотентная запись в хранилище (upsert по ключу).
5. Нормализация и валидация данных
Нормализация — приведение данных к единой схеме и единицам измерения, чтобы downstream‑сервисы не зависели от “капризов” конкретных устройств.
5.1 Типовые операции нормализации
• Единицы измерения: °C vs K, kPa vs bar, rpm vs rad/s.
• Имена полей: temp, temperature, T → temperature_C.
• Типы данных: строки → числа, булевы значения, обработка NaN.
• Округление/квантизация (если нужно), масштабирование.
• Приведение времени: UTC, корректировка часового пояса, проверка “скачков” времени.
5.2 Валидация схемы (schema validation)
В ingestion обычно применяют схему сообщения (JSON Schema/Protobuf/Avro). Валидация проверяет:
• обязательные поля (device_id, timestamp);
• диапазоны (например, температура −40…150 °C);
• типы (число/строка);
• версии схемы (schema_version).
Сообщения, не прошедшие валидацию, отправляют в “карантин” (dead‑letter) для анализа.
5.3 Обогащение (enrichment)
Enrichment — добавление метаданных: цех/линия/станок, тип датчика, коэффициенты калибровки, геометка, пороги и т.д. Обычно enrichment делается по device registry (паспорт устройства) или по таблице соответствия (mapping).
6. Правила маршрутизации (routing)
Маршрутизация определяет, куда “идёт” сообщение после приёма. Маршрутизация может быть по topic, по типу события, по качеству данных или по бизнес‑логике.
6.1 Маршрутизация по topic/типу
Пример:
• factory/line1/motor7/telemetry → TSDB (временные ряды)
• factory/line1/motor7/alarm → alerting + CMMS
• factory/line1/motor7/cmd_ack → сервис управления
• factory/+/+/raw → Kafka (сырой журнал)

6.2 Маршрутизация по качеству/валидации
• валидные данные → основной поток
• невалидные/подозрительные → quarantine/dead‑letter topic
• данные с низким качеством (missing, outliers) → отдельный поток для очистки/доп.обработки
6.3 Маршрутизация событий (rules/CEP)
Часто ingestion объединяют с rule engine:
IF temperature > T_max AND duration > 5 min → событие ALARM
IF vibration_rms растёт 3 окна подряд → событие “признак износа”
События отправляются в отдельные топики/очереди и запускают действия (уведомление, заявка, команда).
7. Типовая “сквозная” цепочка ingestion
1) Device/PLC → Gateway: сбор по Modbus/OPC UA.
2) Gateway: фильтрация + нормализация + буфер на диске.
3) Gateway → Broker: MQTT over TLS (QoS 1).
4) Ingestion service: валидация схемы + дедупликация + enrichment.
5) Routing: raw → Kafka (журнал), telemetry → TSDB, events → alerting/CMMS.
6) Мониторинг: метрики задержки, процент потерь, размер буфера, ошибки валидации.
8. Набор инженерных метрик для контроля ingestion
• Ingest latency (p50/p95/p99) — от устройства до брокера/хранилища.
• Loss/Drop rate — потери/отбросы сообщений (по причинам).
• Duplicate rate — доля дубликатов (важно при QoS1/retry).
• Backlog/buffer depth — сколько сообщений в буфере шлюза/очереди.
• Schema validation failures — доля сообщений, не прошедших валидацию.
• Time skew — отклонение timestamps устройств от эталонного времени.
9. Частые ошибки и как их избежать
• Нет буферизации на шлюзе → при пропаже связи данные теряются.
• Нет идентификаторов/seq → невозможно дедуплицировать и восстановить порядок.
• Нормализация “по месту” в каждом сервисе → несогласованность и ошибки; лучше централизовать в ingestion.
• Смешивание сырого потока и событий → downstream перегружается; события нужно выделять.
• Отсутствие карантина для невалидных данных → “ломают” пайплайн и аналитику.
10. Итоги
• Шлюз/edge — ключевая точка: протоколы, безопасность, буферизация.
• Store‑and‑forward + подтверждения → устойчивость к разрывам связи.
• Нормализация/валидация/обогащение → единое качество данных для всей платформы.
• Routing разделяет потоки: сырьё (журнал), телеметрия (TSDB), события (алармы/CMMS).
• Метрики ingestion (p95 задержки, backlog, ошибки схемы) обязательны для промышленной эксплуатации.
Самопроверка (6 вопросов)
• Зачем в архитектуре IoT нужен gateway, если есть MQTT?
• Как работает store‑and‑forward и какие политики переполнения бывают?
• Почему QoS 1 приводит к дубликатам и как с ними бороться?
• Что такое schema validation и куда девать невалидные сообщения?
• Какие правила маршрутизации нужны для разделения “raw/telemetry/events”?
• Какие 3 метрики ingestion вы бы поставили в мониторинг в первую очередь?
